
* v

NASA Contractor Report 4097

Design Verification of SIFT

Louise Moser, Michael Melliar-Smith,
and Richard Schwartz

CONTRACT NAS1-15528
SEPTEMBER 1987

NASA Contractor Report 4097

Design Verification of SIFT

Louise Moser, Michael Melliar-Smith,
and Richard Schwartz

SRI International
Menlo Park, California

Prepared for
Langley Research Center
under Contract NAS1-15528

National Aeronautics
and Space Administration

Scientific and Technical
Information Off ice

1987

Contents

1

2

3

4

5

6

7

8

9

Introduction

The Requirements for SIFT

Substantiating the Reliability of SIFT

The Specification of Reliability

Hierarchical Specification and Verification

An Outline of the Design of SIFT

The Markov Reliability Model

An Outline of the Specification Hierarchy

Fault Model Specification

10 Transition Specification

4

6

8

11

15

20

28

33

38

43

1

CONTENTS

11 Input/Output Specification

12 The Replication Specification

13 The Activity Specification

14 PrePost and Imperative Levels

1 5 Conclusions and Further Work

2

48

54

61

71

76

List of Figures

1 A Hierarchy of Specifications. 16

2 A View of the SIFT Hardware. 21

3 The Broadcasting and Voting of Information in SIFT. . . . 23

4 Information Flow for Error Reporting and Reconfiguration. 25

5 The States of the Markov Model-Projected into the Plane of
the First Two Indices, Showing Solid Faults and Reconfigu-
ration but not Transient Faults.. 30

6 The Hierarchy of Specifications for the SIFT Design Validation. 34

7 Three tasks in the IO Specification. 50

8 Three Tasks in the Replication Specification. 57

9 The Timing Relationships between Subframes on Asynchronous
Processes. 62

10 A Partial View of Three Tasks in the Activity Specification. 64

3

1

Introduction

A SIFT reliable aircraft control computer system, designed to meet the
ultrahigh reliability required for safety critical flight control applications
by use of processor replication and voting, was constructed by the Bendix
Corporation for SRI, and was delivered to NASA Langley for evaluation in
the AIRLAB. To increase our confidence in the reliability projections for
SIFT, produced by a Markov reliability model, SRI constructed a formal
specification for SIFT, defining the meaning of reliability in the context of
flight control. A further series of specifications defined, in increasing de-
tail, the design of SIFT down to pre and post conditions on Pascal code
procedures. Mechanically checked mathematical proofs were constructed
to demonstrate that the more detailed design specifications for SIFT do
indeed imply the formal reliability requirement. An additional specifica-
tion defined some of the assumptions made about SIFT by the Markov
model, and further proofs were constructed to show that these assump-
tions, as expressed by that specification, did indeed follow from the more
detailed design specifications for SIFT. This report provides an outline of
the methodology used for this hierarchical specification and proof, and de-
scribes the various specifications and proofs performed. An appendix to
this report contains the actual specifications and proofs themselves, but in
a form that is not suitable for casual perusal.

4

1. INTROD UCTION

Rather than provide a comprehensive description of the SIFT system
and the algorithms used to achieve the desired fault tolerance, this report
describes the process of refining the high-level specifications of SIFT down
to the implementation level and of justifying the refinement of the specifi-
cations by mathematical proof. A more detailed description of SIFT can
be found in (11 and [2]. A description of the SIFT executive appears in [3].
The SIFT hardware is documented in [4], [SI and [6]. The fault tolerance
algorithms employed are defined in [2] and [7).

The specifications and proofs described here were performed using the
Enhanced HDM Specification and Verification System, constructed by SRI
for the National Computer Security Center. This report should be read in
conjunction with the Enhanced HDM User Manual [13] and the Revised
Special Language Definition [141.

5

The Requirements for SIFT

The SIFT computer system has been designed to meet the requirements
for future passenger aircraft control. Such aircraft must be designed to
use significantly less fuel than current aircraft. Many design innovations
are expected to assist in achieving the desired fuel economy, innovations
in materials, structures, aerodynamics, engines, and almost every other
aspect of aircraft design. Several of these innovations will require computer
control of the flight of the aircraft, particularly to maintain the stability
of the aircraft and to reduce the stresses in the structures of the aircraft.
This computer control will be essential at all times to ensure the safety
of flight. Existing aircraft use computers for various purposes, but never
to perform flight safety critical functions, and thus do not have to meet
the very demanding reliability requirements that apply to safety critical
components of the aircraft.

The reliability requirements for a safety critical flight control computer,
as proposed by FAA and NASA, allows a probability of life threatening
failure no greater than lov9 during a 10 hour flight. This is equivalent
to a mean time between failures of about one million years of operation,
assuming maintenance after each 10 hour flight. The requirement allows
higher rates for less critical failures, but the difficulty of assessing all the

6

2. THE REQUIREMENTS FOR SIFT

consequences of failures in computer systems has led us to regard any devi-
ation from the ‘correct” output as a failure of the system. Not only must
the SIFT computer system be designed to meet this reliability requirement,
but the design and design methodology must be such that the reliability
estimates made for the system can be substantiated.

7

I

3

Substantiating the Reliability
of SIFT

The extreme reliability required of SIFT imposes a very difficult task of
justifying the achievement of that level of reliability. At the required re-
liability rate, mere observation, even of a large number of systems, will
be ineffective. Furthermore, a SIFT system must be able to recover suc-
cessfully from several mission faults for every allowable system failure and
must therefore be able to recover from quite improbable and unforeseen
faults and even combinations of faults. Thus, validation by fault injection,
while necessary, is unlikely to be convincing that SIFT meets its reliability
requirements.

Our belief that SIFT meets the reliability requirement must be based on
an extrapolation from fault rates that are easier to measure, such as those
for an individual processor. For SIFT, this extrapolation takes the form of a
discrete Markov analysis, with the numbers of working and faulty processors
defining the states and the fault and reconfiguration rates defining the
transitions. The validity of this extrapolation depends on a number of
assumptions, and at the desired level of reliability even “minor” violations
of the assumptions can have significant effects on the reliability achieved.

8

3. SUBSTANTIATING THE RELIABILITY OF SIFT

Thus, the assumptions must themselves be quite rigorously examined if the
claimed reliability is to be believed. For instance, one important assumption
of the Markov analysis is that the occurrence of faults is well described by
a Poisson model with complete independence between processors. Much of
the electronic and mechanical design of SIFT is intended to maintain this
independence. An outline of that reliability analysis and of its results are
given in [I].

The validity of the Markov analysis depends also on the assumptions
that the states and the transitions of the Markov model correspond ac-
curately to the actual system and that the states in which system failure
is possible are correctly identified. But this correspondence is far from
obvious, for the actual system has many states with complex transitions
between them, and the correspondence must be maintained even when one
or more of the processors has suffered a fault. Because even a very small
defect in the correspondence could allow failures at an unacceptable rate,
the validation of the correspondence must be performed with as much rigor
as we can achieve, the rigor of formal mathematical proof.

The increase in our confidence as to the reliability of SIFT results from
the careful identification in the specifications of the assumptions on which
that reliability rests, and on our confidence that those assumtions are in-
deed valid for the actual SIFT implementation, and on our confidence in
the validity of the logical deduction leading from those assumtions to the
reliability of SIFT. Absolute certainty is not possible, but it our belief that
the methodology described here, carefully followed, can indeed significantly
reduce our concerns that errors in the design or overlooked assumptions will
reduce the level of reliability actually achieved to the point of significant
hazard to our systems.

The use for formal specifications and formal mathematical proof to en-
sure that SIFT meets the desired functional and reliability requirements
presents two major issues.

0 How does one define the criteria so that they are sufficient to ensure

9

3. SUBSTANTIATING THE RELIABILITY OF SIFT

the reliable operation of the system?

0 How does one prove that the criteria are satisfied by the actual sys-
t em?

10

4

The Specification of Reliability

The ability to define formally the requirement for reliability is crucial if
the formal verification effort is to have any practical significance. One
must have confidence, even as a noncomputer scientist, that the formal
specifications stating what is meant by the reliable operation of the system
do indeed reflect the intended behavior.

Unfortunately, there is no formal or mechanical means by which it is pos-
sible to check that these top-level specifications correctly state the property
required of the system, the property of reliability in the case of SIFT. That
they express the intuitive intent of the system designer must, in the end, be
determined by human inspection. The rigorous mathematical verification
of correspondence between specification and implement at ion is meaningful
only to the extent that we believe that the specifications do indeed charac-
terize the behavior that we require.

Formal specifications are hard to read and understand, and it is not
at all easy to consider all of the details and interactions that ensure our
intent inevery case. The larger and more complex the system, the more
acute the problem becomes. Were we to provide very detailed specifications
that reflect closely the actual construction and behavior of the implementa-

11

4. THE SPECIFICATION OF RELIABILITY

tion, our task of verifying the correctness of the implementation would be
greatly simplified. But experience has shown that such specifications are
just as large, just as complex, just as difficult to understand, and just as
liable to error, as the implementation itself. If we begin with specifications
that are too detailed for validation by human inspection, the considerable
effort required for formal verification would, and should, add little to our
confidence in the system.

If we are to obtain a specification that can be understood and believed, it
is essential that the specification should be brief and simple. Specifications
that are only a page or two in length can be read and understood, even by
people that are not computer scientists. Such specifications cannot state
every detail of the behavior of the system; only the most critical properties
we require can be included. In the case of SIFT, these top-level formal
specifications define only what we mean by reliable operation and leave
almost all other aspects of SIFT to be determined by subsequent stages of
design.

For SIFT, the top-level specification consists of two parts linked together
by a predicate systemsafe which indicates that the replication of each of
the tasks is sufficient for the voting to be able to mask the effects of the
faults present in the system. The two parts are

0 A discrete Markov reliability model, with the numbers of working and
faulty processors defining the states and the fault and reconfiguration
rates defining the transitions. The model also enumerates the states
in which systemsafe is assumed to be true.

0 A specification for the behavior required of the system when sys-
temsafe is true, asserting that the system will perform the desired
flight control function by applying the desired computation to the
inputs to generate the outputs.

The methodology for achieving a high confidence in the reliability estimates
for SIFT now consists of five parts.

1 2

4. THE SPECIFICATION OF RELIABILITY

0 First, the Markov reliability model, based on appropriate estimates
for the failure rates of individual components, must be used to com-
pute the probability that systemsafe remains true for the entire
duration of the flight, confirming that this probability is sufficiently
high for our purpose.

e The specification of the behavior of the system while systemsafe
is true must be validated by human inspection as being sufficient to
ensure the reliable performance of the flight control function that we
require. This specification describes the essential behavior we need
from the system. Since there are many possible behaviors that we
might conceivably need, there is no way, other than human inspection,
to determine that this particular behavior is indeed what is required.

e Next, it is necessary to demonstrate by formal verification that, so
long as systemsafe is true, the design of the system, as expressed
by the more detailed design specifications, does indeed satisfy the
behavioral specification and thus performs the desired flight control
function, even though one or more processors may be faulty.

0 Further, we must demonstrate that the Markov analysis computes
an upper bound on the probability that systemsafe becomes false.
This involves showing that the states of the model are states of the
actual system, and that the transitions of the system, resulting from
faults and reconfiguration actions, are accurately reflected by the
transitions of the model.

e Last, we must achieve as much confidence as possible that the physi-
cal implementation precisely corresponds to the design stated in the
specifications, and that the assumptions about the implementation
expressed by the specifications are reasonable.

The form of expression of the Markov model does not lend itself to direct
manipulation by the Enhanced HDM specification and verification system
used for this validation. It is therefore not possible to validate the Markov

13

4. THE SPECIFICATION OF RELIABILITY

model within the Enhanced HDM system. Rather, an additional set of
top-level specificat ions were prepared that represent the assumptions made
by the Markov model about the states and transitions of the actual system.
There is no mechanical check of the adequacy of these specifications and,
in the current state of the art, human inspection is necessary to establish
that the specifications capture the assumptions essential to the validity of
the Markov model. The demonstration that the Markov analysis computes
an upper bound on the probability of failure thus requires

0 Confirmation by human inspection that the additional set of transi-
tion specifications adequately state the requirements of the Markov
model.

0 Validation by human inspection of the transition rates of the model,
since the more formal specifications do not yet model the rates at
which faults and reconfiguration actions take place.

0 Formal verification that the actual system satisfies the set of transi-
tion specifications.

14

5

I

Hierarchical Specification and
Verification

To obtain adequate confidence in the correctness of the top-level specifica-
tions, it is necessary to construct very high-level specifications that abstract
from many of the details of the system, since only very high level specifi-
cations can be succinct enough to be validated by human inspection. The
high level of these specificat ions increases the difficulty of formally verify-
ing that the actual system does indeed satisfy these specifications. Because
the top-level specifications address only particular critical aspects of the
system and do not describe much of the system’s mechanism at all, there
may be little in common between them. It is often not obvious how the
specifications constrain the results of computations about which they say
nothing directly, and it may be quite hard to reconcile the broad require-
ments of the very high-level specifications with the detailed data structures
and transformations of the programs for the actual system.

In the construction of a formal mathematical argument demonstrating
that the detailed implementation satisfies a very abstract specification, it
has been found necessary to construct a hierarchy of intermediate specifi-
cations, as illustrated in Fig. 1.

15

5. HIERARCHICAL SPECIFICATION AND VERIFICATION

a . .

: : *. ... : * . : :
* . : .

Ln

Figure 1: A Hierarchy of Specifications.

16

P F i+ l i+ l

P F n n

. 5. HIERARCHICAL SPECIFICATION AND VERIFICATION

Each level Li in the hierarchy specifies an abstract view of the system
in terms of a set of primitive predicates Pi and functions F,. The spec-
ification for the system is given by a set of axioms, characterizing those
properties of the system appropriate for that level of system abstraction.
The specification for level i is constructed as a completely self-contained
description of the system, completely describing the system at that level of
abstraction. Thus, every level of our hierarchy describes the same system,
at different levels of detail. We refer to this hierarchy of specifications as a
vertical hierarchy.

Specificat ion and programming languages often provide a different type
of hierarchy, which we call a horizontal hierarchy. This horizontal hierarchy
is formed when specification modules defining more complex concepts are
defined in terms of existing simpler specification modules. Note that, in a
horizontal specification hierarchy, successive levels of the hierarchy describe
different concepts, whereas all the levels of a vertical hierarchy describe the
same concept but at differing levels of abstraction and detail. It is of course
quite permissible for the specifications at one level of a vertical hierarchy
to be constructed as a horizontal hierarchy, and indeed the specifications
for SIFT are so constructed.

Our objective in the formal verification is to show that the implemen-
tation satisfies the top-level specification or, in other words, that the prop-
erties required by the top-level specification follow as a logical consequence
of the implementation. In practice, we perform this verification one level
at a time.

The specification at level i is given in terms of sets of predicates Pi and
functions F', together with a set of axioms that define their properties. The
specification at level i + 1 is similarly defined. Since these two specifica-
tions are given at different levels of abstraction, some of the predicates and
functions in terms of which they are expressed will differ. But the more
abstract specification at level i is an abstraction of the more detailed spec-
ification at level i + 1 and thus every predicate P; and function Fi is an
abstraction (possibly complex) of corresponding predicates and functions

1 7

5. HIERARCHICAL SPECIFICATION AND VERIFICATION

at level i + 1. To establish this correspondence, we construct a mapping
between the two levels that defines each primitive function and predicate
of the higher level L; in terms of the functions and predicates of the lower
level Li+l. The mapping between levels need not be complete; the mapping
itself may be given as a set of axioms, saying only enough about the cor-
respondence to derive the necessary axioms of the higher level as theorems
from the axioms of the lower level. It is required only that the mapping
axioms be consistent, i.e., that there exist a complete functional mapping
between levels which satisfies the mapping axioms.

The verification of satisfaction now requires that each axiom at level
Li, its predicates and functions mapped into those of level L;+l , follows
as a logical consequence of the axioms of level L;+l, i.e., that it can be
proved as a theorem from those axioms. Thus, under this mapping, any
property that can be proved to follow from the specification Li can also be
proved to follow from the lower-level specification L;+l. By demonstrat-
ing this correspondence between each successive pair of levels L; and L;+l,
one can conclude by induction that any property provable from the highest
level specification is also provable from the lowest level specification. Thus,
any analysis of the system based on a higher-level specification in the hi-
erarchy is valid and could have been performed on the lowest level system
specificat ion.

Within the specification hierarchy for SIFT, the lowest level specifica-
tion of the system is the actual SIFT system executed by the hardware,
while the highest level specification reflects the intended overall function
performed by the fault-tolerant system. The higher level specifications rep-
resent, in effect, system requirements, stating properties to be possessed
without defining method of attainment. As one moves down the hierarchy,
each lower- level specification successively introduces additional mechanism
in the design specification to achieve the fault tolerance, and expresses a
more detailed and operational view of system transformation. Between
successive specificat ion levels one can perform incremental design verifica-
tion, proving that the more detailed design specification at the lower level

18

5. HIERARCHICAL SPECIFICATION AND VERIFICATION

supports the abstracted view at the higher level. By gradually introducing
the algorithms used.to achieve fault tolerance, one can verify each aspect
of the design at the highest level of abstraction containing the necessary
concepts.

As an example, one can prove that replication and majority voting serve
to mask faults, using a specification of the system as a single (and therefore
synchronous) global object. Having proven this paradigm with respect to
that specification level, one can then define a lower-level specification of
the system as a distributed asynchronous system with a broadcast com-
munication interface. It is then required to exhibit a mapping from the
distributed system view to the global system view at the higher specifica-
tion level. Demonstration that each axiom of the global state specification
is provable from the axioms defining the distributed state specification will
ensure that any theorems about fault masking in the global system view
are valid for the distributed system view as well. Thus, the paradigm of
fault masking through task replication is introduced and validated prior to
introducing techniques for fault isolation through distribution of resources.

19

6

An Outline of the Design of
SIFT

The SIFT aircraft control computer system is designed to achieve high relia-
bility from standard computers by replication of the hardware and adaptive
majority voting. The use of majority voting, rather than a hot standby, is
necessary to avoid even minor perturbat ions to high-performance real-time
tasks during error recovery. In contrast to other majority-voted systems,
for instance FTMP [8] , in SIFT the voting mechanism that detects and
masks hardware faults is implemented entirely in software. This allows the
construction of SIFT from conventional computer components and allows
greater flexibility. Hardware detected to be faulty is reconfigured out of the
system, again by software, with its workload being transferred to other pro-
cessors. Thus, several successive faults can be survived if there is sufficient
time between them to permit the reconfiguration.

The system is constructed from up to eight identical computer units,
each containing a Bendix BDX930 processor, a 32K main store, a broadcast
interface, and a 1553 interface, as shown in Fig. 2. The BDX930 is a
16 bit processor specifically designed for military and aircraft use, with
an instruction set reminiscent of, but not compatible with, Data General

20

6. AN OUTLINE OF THE DESIGN OF SIFT

I I ’
I 1 I 1 I
44 I t *v

1 1 I
I 1 I I

I

*

Figure 2: A View of the SIFT Hardware.

21

6. AN OUTLINE OF THE DESIGN OF SIFT

computers and a speed of less than one million instructions per second.
Each BDX930 processor has its own 32K word main store, which cannot
be accessed by any other processor. The 1553 interface provides a serial
bus connecting the processor to the various aircraft sensors and actuators.
The mean time between failures of one of these units, containing processor,
store, and interfaces, is something less than 2000 hours.

The processors communicate with each other through the broadcast
interface, which contains the drivers and receivers for the star-connected
broadcast cables and a 1024 word area of storage called the data file. The
broadcast interface operates autonomously from the BDX930 processor,
and is designed so that if all processors broadcast simultaneously, the broad-
cast receivers will still be fast enough to receive and store all the information
broadcast. The data file is divided into eight regions, one of which, called
the broadcast buffer, is used to hold information to be broadcast, while the
other seven regions, collectively known as the input buffer, are used for the
storage of information received from up to seven other processors. Thus, if
a faulty processor broadcasts garbage, that garbage will all be placed in a
specific region of the input buffer of every other processor’s data file, where
it can be ignored and where it cannot damage sound information being
broadcast by other processors.

In SIFT there is, conceptually, a single instance of each logical task,
but for reliability that task is actually replicated and executed on three or
five processors. Fig. 3 shows a task b, replicated on three processors, with
its output being used by a task a, of which only one replication is shown.
As task b generates its outputs during execution, it invokes an executive
function which copies the results into the output region of the data file, and
broadcasts them to all the other processors. At each of the processors, the
various replications of the results of task b are received in the regions of the
data file corresponding to input from the various processors executing task
6. In each of the processors, the three versions of the results from task 6 are
extracted from the data file by voting software and the majority result is
placed in the input buffer, from which it can be obtained by any task that

22

6. A N OUTLINE OF T H E DESIGN OF SIFT

Processor A

...

\
Data File \

Processor B

Task X 7
(-) \

....... _....

@, . : : I

Processor c

Data File \

Figure 3: The Broadcasting and Voting of Information in SIFT.

23

6. A N OUTLINE OF T H E DESIGN OF SIFT

needs to use the results of task b. All results broadcast are voted in every
processor, even though possibly no task on that processor will use the voted
value. Since voting takes time, the various words that are components of
the result of a task are voted independently.

The voting software notes any discrepancies among the values on which
it votes. A task error reporter, run periodically on every processor, gen-
erates a synopsis of the errors detected on that processor and broadcasts
the synopsis, as is shown in Fig. 4. The global executive task, which is
replicated like other critical tasks, receives the error synopses broadcast
from the various processors and decides from them which processors are
faulty. The global executive is responsible for the reconfiguration of the
system, generating the configuration of processors to be used, excluding
the processors deemed faulty, and distributing the execution of application
tasks appropriate to the current phase of the flight among the configured
processors. In each processor the results from the various replications of
the global executive are voted and then used by the local executive task to
select a task schedule for its scheduler and to set up the sets of processors
executing each task for use by the voting software. Note that while the
global executive task is a replicated and voted task common to the whole
system, the error reporter and the local executive are tasks specific to each
processor individually and their results cannot be voted. Even though they
are run on every processor, the results they generate relate to their own
processor alone. Care is taken in the design to ensure that errors in the
results of an error reporter or a local executive can damage only its own
processor.

The schedule for SIFT is designed so that different combinations of
tasks can be executed on different processors, and replicated tasks can
be executed at different times on different processors. The schedule is
organized into equal subframes, which would typically be 1 or 2 ms long,
and are triggered by interrupts from each processor’s clock system, the only
interrupts in the SIFT system. The sequence of activities to be performed
by a processor within a subframe is determined by a schedule table, which

24

6. A N OUTLINE OF THE DESIGN OF SIFT

Voter 7
Interactive vv

Consistanc! 1

v J

Global
Executive

Voter
_r

w

Local
Executive

pq TJ Scheduler

Figure 4: Information Flow for Error Reporting and Reconfiguration.

25

6. AN OUTLINE OF THE DESIGN OF SIFT

is selected from several such tables by the configuration broadcast by the
global executive. Within a subframe, the schedule can require a sequence
of votes and task executions, within the time constraint imposed by the
length of the subframe. A task execution can use results voted earlier in
the same subframe. However, the voting of results broadcast earlier in the
same subframe is prohibited and must await the subframe after that in
which the last of the three replications is broadcast. This design decision
was made to avoid a complex synchronous proof that the result will have
been received before it is voted. The overhead associated with the handling
of the clock interrupt, together with the control exercised over the skew
between clocks, is sufficient to ensure that results broadcast by a processor
in one subframe can safely be voted at any time during the next subframe
by any other processor.

Many of the flight control tasks require the same iteration rate, typically
10-20 iterations per second, but other tasks can be run less frequently.
This interval, within which these important flight control functions run,
is known as the system frame. Tasks, such as those of the global and
local executives, are also run within the same frame. Other tasks, such as
navigation tasks, could typically be run more slowly, but for this proof the
simplifying assumption that all tasks run at the same rate was made. The
execution window for each task is the interval of time within which the
task must be executed and its results voted. The stability of the control
laws mechanized by the flight control programs depends on avoiding long
transport delays between the reading of sensor values and the commanding
of actuator positions, and thus, for faster flight control tasks, the execution
window may be only a few subframes. Slower tasks are less demanding and
the execution window for them may extend over much of the frame.

The validity of the majority-voting approach depends on all task repli-
cations on working processors generating identical results, which in turn
depends on these replications performing identical calculations on iden-
tical inputs. Provided that the system remains safe, majority voting of
the results of replicated tasks suffices to ensure that all working proces-

26

6. A N OUTLINE OF THE DESIGN OF SIFT

sors obtain the same values for the results of those tasks. Where an input
is obtained from an unreplicated source, no such assurance applies. The
result obtained from an unreplicated source may be erroneous, which the
tasks using that value must be able to recognize and accommodate, using
data from other sources and application dependent algorithms. The faulty
source might even broadcast different values to different processors, thus
causing replicated tasks on those processors to obtain different results. The
majority-voting algorithms cannot mask errors where all of the replications
obtain different results, and this possibility must be prevented. In SIFT,
a mechanism called interactive consistency [7] is used to ensure that all
working processors obtain the same value for any input derived from an
unreplicated source, whether that be an unreplicated application task, a
sensor, or an error reporting task.

27

7

The Markov Reliability Model

The design of SIFT aims to ensure that errors generated by faults are
masked by majority voting. Provided that every computation is performed
by many correctly working processors and only a few failing processors, so
that the correct results are in a majority, this technique is effective and
SIFT will operate reliably even in the presence of faults. SIFT can fail in
either of two ways:

0 So many processors have failed that there are too few processors left
in the configuration to ensure that tasks are executed by correctly
working processors. This situation is known as ezhaustion of spates.

0 Several processors fail in rapid succession, so that there is not enough
time for the reconfiguration algorithms to remove the first failing pro-
cessor from the configuration before further processor failures occur.
Until reconfiguration is completed, some tasks may be executed by
more faulty processors than working processors, resulting in a possi-
bility of failure. This situation is known as coincident faults.

In both of these cases the cause of failure is one or more tasks being executed
on a set of processors in which correctly working processors are not in a

7. THE MARKOV RELIABILITY MODEL

majority.

The objective of the Markov reliability analysis is to compute the grob-
ability that such a situation never occurs during a flight of appropriate du-
ration, thus ensuring that majority voting will suffice to ensure the reliable
operation despite the failure of individual processors. Note that coincident
faults or exhaustion of spares do not automatically cause SIFT to fail; the
particular allocations of tasks to processors, or the nature of the faults, may
be such that SIFT can continue to operate, but the possibility of failure is
present. The reliability analysis takes the conservative view that if SIFT
reaches a state in which failure is possible then SIFT has failed.

The analysis of the reliability of SIFT is based on a discrete Markov
model, described in more detail in [SI. The analysis is absolutely dependent
on the assumption that the faults are statistically independent and are
well modeled by a Poisson distribution. The hardware design of SIFT
aims to support this assumption. In the model, the states of the system
are represented by a three dimensional matrix, with transitions between
states representing faults and recovery actions. The indices of the three
dimensions of the model are

0 The number of processors that have been removed from the configu-
ration by reconfiguration

0 The number of processors that have developed solid faults

0 The number of processors that have developed transient faults.

Fig. 5 shows an example of the projection of the model into the plane
of the first two indices, showing the effects of only solid faults and recon-
figuration. The initial state of the system is the 0,O state at top left. The
incidence of solid faults is represented by horizontal transitions to the right,
while the effect of successful recognition of the fault and reconfiguration of
the system to remove that processor from the configuration is represented

29

7. THE MARKOV RELIABILITY MODEL

Loss of a Good Processor

Failed State

out of the System

Figure 5: The States of the Markov Model-Projected into the Plane of the First
Two Indices, Showing Solid Faults and Reconfiguration but not Ttansient Faults.

30

7. THE MARKOV RELIABILITY MODEL

by downwards vertical transitions. The shaded states are states in which
the system is not safe because the number of failing processors in the con-
figuration could exceed the error-masking ability of the majority-voting
algorithm.

The example figure shows that initially three successive faults, repre-
sented by three successive transitions to the right, would take SIFT into
a failed state. The analysis shows that the probability of this particular
failure mode is quite low, because faults occur relatively seldom resulting
in low transition rates for the horizontal fault transitions, while reconfigu-
ration is rapid resulting in high rates for the vertical reconfiguration tran-
sitions. Consequently, the model predicts a very small probability that,
having made the first transition to the right, the system will make two
more fault transitions without making any reconfigurat ion transition.

The third dimension of the model represents the occurrence of transient
faults; these are not directly visible in this projection, but the diagonal tran-
sitions represent the effects of inability of the global executive to recognize
transient faults as transient, resulting in the loss of useable processors from
the configuration. If additional transient faults are present, more of the
states become unsafe. Note that there are no transitions out of unsafe
states; once the system becomes unsafe, we assume conservatively for this
reliability analysis that it remains unsafe, even though the actual system
may well be able to recover.

The Markov model also represents the occurance and recovery from
transient faults, expressed as a third dimension, orthogonal to those pre-
sented in Fig. 5. The analysis of transient faults is quite complex and does
not have a substantial impact on the specifications and proofs. Conse-
quently, we do not include here discussion of that aspect of the Markov
model, but refer the reader to [5] where it is explained in detail.

Rates are assigned to each of these transitions, as explained in more de-
tail in [5] . Starting from an initial probability of 1.0 for the O,O,O state and
0.0 for all other states, the discrete Markov analysis computes the proba-

31

7. THE MARKOV RELIABILITY MODEL

bilities for the various states at the end of the required mission duration.
The probabilities for the unsafe states are summed and represent an upper
bound on the probability of system failure during the mission, assuming
of course that system failure is impossible so long as systemsafe is true.
Examples of the results of such analyses are given in [5] .

32

1

8

An Outline of the Specification
Hierarchy

Fig. 6 shows an outline of the various specifications and analyses that are
used in the justification of the reliability of SIFT. Before we describe the
individual specifications in detail, we give a description of their intent and
interaction. On the right of the figure is a hierarchy of specifications of the
correct functional behavior of SIFT, while on the left is a set of analyses
that yield the probability of that correct behavior. The specifications at
the bottom of the figure describe the hardware of SIFT, upon which the
more abstract analysis is based.

The IO Specification, the most abstract functional description of the
system, asserts that in a safe configuration, the result of a task computation
will be the effect of applying its designated mathematical function to the
results of its designated set of input tasks, and that this result will be
obtained with a real-time constraint. Each task of the system is defined to
have been performed correctly, with no specification of how this is achieved.
The specification has no concept of processor (thus no representation of
replication of tasks or voting on results) and, of course, no representation
of asynchrony among processors. This specification contains only 8 axioms

33

8. AN OUTLINE OF THE SPECIFICATION HIERARCHY

Re liabi I ity

- \
Analysis

I

I I Transition
Specification , I

Error Rate I

Analysis .
. h .

I
Fau It Model

I I Specification

I
I
I

I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

I I
I I

a #

BDX930
Fau It M ode1

Figure 6: The Hierarchy of Specific

I/O
Specification

Replication
Specification

Activity
Specification

Pre Post
Specification

Pascal
Program

tions for the SIFT Design Validation.

34

8. AN OUTLINE OF THE SPECIFICATION HIERARCHY

and is intended to be understandable to an informed aircraft flight control
engineer.

The Replication Specification elaborates upon the IO Specification by
introducing the concept of processor, and therefore describes the replica-
tion of tasks and their allocation of processors, voting on the results of
these replicated tasks, and reconfiguration to accommodate faulty proces-
sors. The specification defines the results of a task instance on a working
processor based on voted inputs, without defining any schedule of execution
or processor communication. This specification is expressed in terms of a
global system state and system time.

The Activity Specification develops the design into a fully distributed
system in which each processor has access to local information only. Each
processor has a local clock and a broadcast communication interface and
buffers. The asynchrony among processors and its effect upon communica-
tion is specified. The specification explicitly defines each processor’s inde-
pendent information about the configuration and the appropriate schedule
of activities. The schedule of activities defines the sequence of task ex-
ecutions and votes necessary to generate task results within the required
computation window. The Activity Specification is the lowest-level descrip-
tion of the complete multiprocessor SIFT system.

The PrePost Specification consists of specifications for the operating
system for a single processor. These specifications are very close to the
Pascal programs, and essentially require the programs to “do what they
do.” In terms of precondition-postcondition pairs, the PrePost Specification
facilitates the use of sequential proof techniques to prove properties of the
Pascal-based operating system as a sequential program.

The various programs that form the SIFT executive are written in Pas-
cal and form the Pascal Implementation, from which is derived by compi-
lation the BDX930 Implementation. This is the lowest level specification
of the SIFT software.

35

8. AN OUTLINE OF THE SPECIFICATION HIERARCHY

The functional behavior described by the 1/0 Specification is assured
only as long as the predicate sys temsafe remains true. The analyses
shown on the left of Fig. 6 provide the probability that sys temsafe will
remain true and that the desired functional behavior will continue. The
BDX930 Fault Model describes the rates of occurrence of various kinds
of fault behavior, distinguishing only between faults that cause the same
erroneous results to be seen and reported by all other processors, and those
that cause different results to be seen, and thus cause conflicting error
reports that could confuse the global executive.

The Error Rate Analysis, which is still manual, is used to determine
the rates at which faults will cause errors, the rates at which those errors
will be detected, the probability that the error reports are clear enough for
the global executive to be certain of its diagnosis, and the rates at which
the system can be reconfigured in order that the last vestiges of erroneous
results can be removed from the system by the majority voting.

The Reliability Analysis is a conventional discrete semi-Markov analysis
that calculates the probability that the system reaches an unsafe configu-
ration from the rates of solid and transient faults and from the reconfig-
uration rates. The analysis computes the probability that sys temsafe
remains true for the 10 hour flight duration, as processors become faulty
and are reconfigured out of the system. Both the Error Rate Analysis
and the Reliability Analysis are Markov models, whose state space must be
demonstrated to be an abstraction of the states of the Replication Specifica-
tion, but whose transition rates are determined by the simpler probabilistic
models.

The Transition Specification imposes a set of requirements on the system
that are assumed by the Markov model of the Reliability Analysis. The
axioms of this specification prohibit some transitions not present in the
Markov model, and require others. They also serve to identify the safe
states of the model.

The Fault Model Specification describes the various types of faults con-

36

8. AN OUTLINE OF THE SPECIFICATION HIERARCHY

sidered in this proof. The specification distinguishes between solid and
transient faults, and between processor and interconnection faults, and de-
fines minimal levels of misbehavior for faulty processors and links that
allow the SIFT global executive to recognize them and remove them from
the configuration.

37

9

Fault Model Specification

The Fault Model Specification provides a relatively simplistic definition of
the types of faults that might occur in SIFT, a definition that is closely
coupled to the capabilities of the SIFT global executive to recognize those
faults. More complex global executive algorithms might be coupled with
more complex fault models. We give here the statements of the fault model
specification, even though understanding some of the details of the speci-
fications requires knowledge of aspects of the replication and activity level
specifications described below.

The specification classifies processors as working, hard, and tran-
sient, and requires that these be mutually exclusive.

faultl: axiom
working-during(p,t) iff not hard(p,t) and not transient (p,t)

fault 2: axiom
hard(p,t) iff not transient(p,t) and not working-during(p,t)

Hard and transient faults are distinguished in that a hard fault is per-
manent, but a processor suffering from a transient fault during one error

38

9. FAULT MODEL SPECIFICATION

frame is required to be working during the next error frame. The error
frame is of the same length as a standard scheduling frame, but is skewed
relative to it. Error reports must be collected before the end of a frame
to allow time for the global executive to consider them and determine the
configuration for the next frame.

fault3: axiom
t2 2 t l and hard(p,tl)
implies hard (p ,t 2)

fault4: axiom
isin-errorframe(i,t 1) and isin-errorframe(i+l ,t2)
and transient(p,tl)
implies working-during (p,t 2)

Faults are defined to be either faulty processors or faulty communication
links, again mutually exclusive with at most one faulty link per processor.

fault 5 :

fault6:

fault 7:

axiom
not working-during (p,t)
iff faulty-proc(p,t)

or (exists q: q#p and faultylink(p,q,t))

axiom
faulty-proc (p,t)
iff (forall q: not faultylink(p,q,t))

axiom
r#q and faultylink(p,q,t)
implies not faultylink(p,r,t)

39

9. FAULT MODEL SPECIFICATION

fault& axiom
t l < t2 and t2 < tl+framesize
and faulty-proc(p,tl) and not working,during(p,t2)
implies faulty-proc (p,t2)

fault9: axiom
t l < t2 and t2 < tl+framesize
and faultylink (p,t 1) and not working-during (p ,t2)
implies faultylink (p,t2)

The objective of the design of SIFT is that the specifications define the
behavior of working processors, but no assumptions are made about the
behavior of faulty processors. This objective aims to reduce the dependence
of the reliability on the nature of the faults incurred, particularly against
malicious faults.

Our proof can, and indeed does, show that a task that is t a s k s a f e
obtains correct results without regard to the behavior of any faulty proces-
sors present in the configuration. But it is not possible to prove important
properties of the reconfiguration behavior, and thus of the transition spec-
ification, without making some assumptions about the nature of faults. In
particular, a faulty processor that does not generate any erroneous results
cannot be detected by the majority-voting algorithms used in SIFT. It also
causes no damage until it generates erroneous results. There is a risk that
such a fault could lurk undetected in the system until another fault occurs
and only then manifest itself, thus exposing the system to much greater
risk of failure due to coincident faults. The problem of correlated coinci-
dent faults, which violate the assumption of independence, is not addressed
in this proof.

TO allow us to justify the Transition Specification, the Fault Model Spec-
ification imposes assumptions on the nature of processor and link faults. A
relatively complex axiom requires that a faulty processor produces at least
one wrong result at least once per error frame and broadcasts that wrong

40

9. FAULT MODEL SPECIFICATION

result to every other processor, where a wrong result is one that differs from
the result obtained by a safe processor. This allows the voting algorithms
in every safe processor to detect the error and the global executive to di-
agnose it. The axiom is complex because the property to be described is
best defined in terms of the relatively detailed Activity Specification rather
than the simpler Replication Specification.

fault 10: axiom
faulty-proc(p,t)
and isin-errorframe(i,t)
and member (q,safe (ending (of(i-1 ,global-exec))))
and dat amember (p ,config (ending (of(i-1 ,global-exec)) ,q))
implies
(exists k: isin-errorframe(i,beggining(of(j ,k)))

and on-during(kj)
and (forall q,r:

(exists t 2 ,y,ac t iv2 :
(member(q,safefor(of(j,k)))
and member(r,safefor (of (j ,k))))
implies
(* qvotes k *)
beginning(of(j,k)) 5 t2
and t2 < ending(of(j,k))
and seqmember(activ2,ached(config(t2 ,q) ,t2 ,q))
and action(activ2) = vote
and taskaction(activ2) = k
and elemaction(activ2) = y
and 1 5 y and y 5 resultsize(k)
(* p and r both voted by q *)
and member(p,pollbyfor (q,k,t2))
and member (r , p 011 by f o r (q , k , t 2))
and seq-elem(datafileinfor-on(q,k,p,start (t2,q)) ,y)

seq,elem(datafilein for,on(q,k,r,st art (t2 ,q)) ,y)

41

42

9. FAULT MODEL SPECIFICATION

SIFT is reconfigured by removing entire processors from the configura-
tion, and there is no mechanism to avoid using a faulty link while continuing
to use both of the processors it connects. Thus reconfiguration to eliminate
a faulty link necessitates removal of one or other of those two processors.
For a non-malicious faulty link, there is no reason to select either one of
these two processors in preference to the other. But there is a risk that
a malicious fault might be able to take advantage of reconfiguration for
faulty links to eliminate other processors systematicly from the configu-
ration. To reduce this risk, in SIFT faulty links are associated with the
processor receiving information over that communication link, since it ap-
pears that the probability of a malicious fault in the relatively complex
reception mechanism is much higher than in the very simple transmission
mechanism. We assume that a processor affected by a link fault has only
one faulty link. The processor is assumed to process information correctly
and to receive information correctly on its other links, but to receive only
garbled information over the faulty link.

fault 10: axiom
faultylink(p,r,t 1)
and working-during(q,t 1)
and seqmember(activ,sched(config(t 1,q) ,t 1,q))
and action(activ) = execute
and taskaction(activ) = k
a n d r # q
implies
datafileinforan(p,k,q,finish(t 1 ,q) +broadcast-delay)
datafilein for-on(p,k,r ,finish(t 1 ,r) +broadcast-delay)

The version of the global executive analyzed by this proof does not
contain algorithms that can handle malicious faults at the transmission end
of links (a relatively low probability type of fault). More recent versions of
the global executive do contain such algorithms, but the proofs undertaken
do not address their validity and the Fault Model Specification imposes the
assumption that such faults do not occur.

1

10

Transition Specification

The Transition Specification must express the constraints on the system
that are assumed by the Markov reliability analysis. These constraints
should be conservative, so that the Markov analysis does not deem the
reliability to be better than it really is. The constraints affect both the
states and the transitions of the Markov model, as follows:

0 The model must not assume a state to be safe when it is not.

0 The model must not ignore unfavorable transitions, nor assume fa-
vorable ones that do not occur.

These constraints are defined in terms of configset(t) which defines
the set of processors comprising the current configuration at time t, and
of a predicate broken(p,t) which determines whether a processor p is in-
operable at time t . The predicate transient(p,t) from the fault model
is used to distinguish processors that are only transiently faulty, leaving
broken(p, t) for processors whose disability is more permanent. The pred-
icate broken(p, t) is not equivalent to the predicate solid(p, t) of the fault
model. As will be seen below, a processor becomes unusable if, due to a
transient fault, it looses synchronization with the other processors or it no

43

10. TRANSITION SPECIFICATION

longer has an appropriate value for the current configuration. The set of
processors denoted by safe(t) comprises those that are neither broken nor
transient at time t.

Transient faults are important in determining safe states but have little
effect on the reconfiguration strategy. Consequently, the description below
concentrates on solid faults and on the projection of the Markov model
shown in Fig. 5.

The axioms that constrain the transitions must ensure that the Markov
model does not make optimistic assumptions. The model contains no tran-
sitions to the left or upwards, which is expressed by the following axioms:

rep-err% axiom
t 2 2 t l implies subset (configset (t2) ,configset (t 1))

rep-err5: axiom
t 2 2 t l and broken(p,tl) implies broken(p,t2)

These axioms state that once a processor has been removed from the con-
figuration it is never readmitted and once a processor is broken it remains
broken.

Transitions to the right in Fig. 5 (faults) must not be underestimated,
but there is little that we can do to constrain the occurrence of faults. It is,
however, possible for the reconfiguration algorithms to make the situation
worse by throwing away working processors. This possibility is addressed
by the following axioms:

rep-err4: axiom
not member (p ,configse t (t 1)) implies broken (p ,t 1)

44

10. TRANSITION SPECIFICATION

rep-errl: axiom
allsafehistory(start-up,i+1)
and i > start-up
and (forall tl: isin-errorframe(i,tl)

and (forall t2: isin-errorframe(i-l,t2)

and ending (of (s t ar t -up ,glo b a1 _exec)) 5 t 3
and t3 5 ending(of(i+l,global-exec))-1
implies member(p,configset (t3))

implies member (p ,safe (t 1)))

imp lies member (p ,safe (t 2)))

The first of these states that if a processor is removed from the configu-
ration then it becomes broken. If the processor is already broken when the
reconfiguration algorithms cause it to be removed, this axiom is of little sig-
nificance. But if the algorithms erroneously remove from the configuration
a working processor, this axiom implies that the transition in the Markov
model is not just vertically downwards but rather diagonally to the right.

The second axiom, rep-errl, requires that a processor remain in the
configuration so long as it is safe. The predicate allsafehistory(start-up,
i + 1) requires that systemsafe be true throughout every frame from the
initial start up to iteration i + 1. The processor must be safe for two suc-
cessive iterations to guarantee its continued retention in the configuration,
for it is possible for a faulty-vote action in one frame to be manifest only
in the results of calculations performed during the next frame. In practice,
the reconfiguration algorithms of the global executive should be capable of
rather better discrimination against transient faults than is implied by this
axiom. A more precise statement would however be quite complex, and the
axiom as stated is conservative.

The Markov model assumes that faulty processors will be removed from
the configuration, as required by:

t

45

10. TRANSITION SPECIFICATION

rep-err2 axiom
allsafehistory(start-up,i+Z)
and i > start-up
and (exists tl: isin-errorframe(i,tl)

and t 2 2 ending(of(i+l,global-exec))
implies not member(p,configset(t2))

and broken(p,tl)

Here, again, we must wait until the second frame to ensure removal of the
processor from the configuration.

That these axioms adequately express the assumptions implicit in the
Markov model must be determined by human inspection, as must the va-
lidity of the rates attached to the transitions in that model.

The axioms of the Transition Specification are mapped onto the Repli-
cation Specification (described below) by two further axioms:

rep-err& axiom
subset (pollfor-of(i,a) ,configset (beginning (of (i,a))))

rep-err7: axiom
broken(p,t) implies not member(p,safe(t))

Using these mappings, the proofs for rep-err4 and rep-err5 were easy,
but the proofs for rep-err& rep-err2, and rep-err3 were lengthy and
difficult. The proofs depend not just on the correct behavior of the global
executive for one iteration but on its correct operation for every iteration
since the start of the system.

Additional mappings would be required in practice to show that, for
each state of the Markov model, the corresponding configuration tables
of the replication level provide sufficient replication for each critical flight

46

10. TRANSITION SPECIFICATION

control task so that tasksafe can be ensured. Task safe for every crit-
ical task implies systemsafe. In the absence of a set of schedules, these
mappings and proofs were not performed, but they should not be difficult.

47

11

Input/Output Specification

The Input/Output Specification of SIFT, the highest level specifying func-
tional behavior, defines the input/output characteristics of tasks performed
by SIFT. The specification defines the configuration of system tasks and
expresses the flow of information between tasks. Based on an abstract
notion of time, which may be interpreted as subframe time, we refer to
iterations of a task taking place during various time intervals. The time
interval for a particular iteration of a task is referred to as its execution
window, having a beginning time and an ending time. Each task is defined
to use as inputs the values produced by its input tasks and produces one or
more outputs during its execution window. Based on a high-level predicate
specifying whether a task is safe during a particular iteration of a task, the
specification defines that a task which is safe during an iteration will pro-
duce exactly one output value, computed as a function of its input values.
Provided that the entire system is safe throughout some interval (Le., that
all tasks are safe for that interval), we can prove by induction that all tasks
will compute correct functions of their intended inputs. This defines at a
high level what it means for SIFT to function correctly.

Conspicuously absent from this specification is any notion that a task
is replicated and computed on a set of processors. At a lower level, we

48

11. INP UT/O UTPUT SPECIFICATION

shall explain that the taskresult value that the 1/0 Specification defines
as resulting from a given task iteration will actually be the outcome of a
majority vote of processors assigned to compute the task. The task safety
predicate taken as primitive in the 1/0 Specification, specifying when a
task can be relied upon to produce correct results, will be defined at a
lower level to be a function of the number of task replications and the
number of working processors.

Briefly, the specification is organized as follows. Each task a in the
set of all executive and application tasks computes a function, denoted by
thefunction(a), of its input values. The function appIy(f,*) takes as
parameters a functional value and an argument list and produces the result
of applying the function to the argument list.' The set of tasks providing
inputs to a is denoted by inputs(a) . For task b that is a member of
inputs(a), the most recently completed iteration of b prior to the execution
window of the iteration of a provides the input to an iteration of a. A
derived function to-of(b, i, a) denotes the iteration of b providing input to
the ith iteration of a. Because all tasks iterate once per frame, one can
prove (and indeed we do) that to-of(b,i,a) is equal to i or i - 1, that is,
that the input task is either "executed" in the same frame as the task or in
the previous frame. During each iteration i of a task a, taskresult(a,i)
denotes the set of output values which are produced. In order to map task
iterations to subframe time, the function of(i, a) is used to denote the time
interval [t l , t z] comprising the execution window of the ith iteration of a.
The functions beginning(i, a) and ending(i, a) denote the beginning and
ending of the execution window, respectively.

The overall structure of task configurations within the 1/0 Specification
is illustrated in Fig. 7. For a task such that the predicate task-safe(a,i)
is true, a will produce exactly one output value during its execution win-
dow. The output of a task which is not safe during its iteration is unspec-

'This use of an explicit apply to avoid the use of higher order logic was a consequence of
the constraints of an earlier specification and verification system. EHDM provides higher
order expressions, but the prior representation was not changed.

49

11. INPUT/OUTPUT SPECIFICATION

I iofa I

Figure 7: Three tasks in the IO Specification.

ified. Because the configuration of tasks is different for different phases of
the flight, not all tasks necessarily compute each iteration. A predicate
on-during(a, i) determines whether taskresult(a, i) is expected to com-
pute a function of its inputs or to return a special bottom element as its
value.

Within the 1/0 Specification the interactive consistency algorithm is
defined as a special form of task. For such a task a, satisfying the predicate
ic(a), its associated function thefunction(a) is defined to be the iden-
tity function. Recall from our discussion in Section IV that the interactive
consistency algorithm is used in order for multiple processors reading un-
replicated (and possibly unstable) input to reach agreement on an input
value. As we explain below, a safe interactive consistency task will always
produce a single output value.

Based on these primitive functions and predicates, the 1/0 Specifica-
tion contains eight axioms, expressing constraints on when task iterations
are to take place and requiring that safe tasks compute functions of their

50

11. INPUT/OUTPUT SPECIFICATION

designated inputs. It is believed that these eight axioms are simple enough
to be readily understood.

These axioms are related to the scheduling of task iterations and are
straightforward. They express basic requirements that successive iterations
of a task are properly ordered in time and that the execution window of a
task b must precede the execution window of a task a to which it provides
input. These axioms are

ioal-1: axiom
beginning (of (i,a)) + 1 < ending (of (i,a))

ioal-2: axiom
ending(of (i,a)) 5 beginning (of(i+ ha))

io-dl: axiom
member(b,inputs (a))
implies beginning(of (i,a)) 2 ending (of (to-of (b,i,a) ,b))

and beginning(of (i,a)) < ending(of (to-of(b,i,a) +1 ,b))

The main axiom defining the Input/Output behavior of a task (together
with its associated set constructor axiom) is the following:

ioa2: axiom
on-during(a,i)
and t asksafe (a,i)
and (forall b: member(b,inputs(a))

implies singleton(task2esult (a,i) ,apply(thefunction(a) ,set -va2 (i,a)))
implies card(t askiresult (b,to_of (b,i,a))) =1)

ioa2a: axiom
member(source(vt) ,inputs (a))
and member (value(vt) ,t asksesult (source (vt) ,to-of(source (vt ,i,a)))
iff member(vt,set,va2(i,a))

51

11. INPUT/OUTPUT SPECIFICATION

The main axiom io22 states that for any iteration i of a task a, such
that a is both on and safe, if each task b providing input to the ith iter-
ation of a returns exactly one output value during its corresponding iter-
ation, then a will return exactly one output during its iteration (i.e., that
taskresult(a,i) will be a singleton set). The value produced will be the
result of applying its designated function thefunction(a) to the set of
(tagged) values produced by its input tasks. The set of input values is
specified as a set of pairs < u , t >, where for each task t in the input set, 21
is the value in the (singleton) set taskresult(t,to-of(t, ;,a)). Thus, pro-
vided a is safe and its input is stable, it will correctly compute an output
value. This is the main statement of functional correctness of the system
that is demonstrated by the proof effort.

In the case of interactive consistency tasks, two additional axiom govern
their characteristics.

ioa3: axiom
ic(a) and ic-tasksafe(a,i) implies card(task-result(a,i)) = 1

ioa4: axiom
ic (a)
implies card(inputs(a)) = 1

and member(b,inputs(a)

and (singleton(vinputs,vt) and member(source(vt) ,inputs(a))
implies apply(t hefunct ion(a) ,vinputs) = value (vt)

implies card(pol1f or-of (to-of (b ,i,a) ,b)) = 1

The second of these defines basic properties of an interactive consistency
task, that it has only a single input, that the source of its input is an
unreplicated task, and that its associated function is the identity function.
Axiom io23 requires that an interactive consistency task which is safe
during its iteration will always produce a single value as output (i.e., the
same value in every processor). By ioa2, if its input task is safe and
thus provides a single output, the interactive consistency task will perform

52

11. INP UT/O UTPUT SPECIFICATION

its associated function (the identity function) on the input. Even if the
input task is not safe, however, the current axiom defines that some single
output value will be produced. This is the main correctness criteria for the
interactive consistency algorithm. We did not carry out a mechanical proof
of the algorithms used for interactive consistency to satisfy this axiom-a
hand proof can be found in [7].

One axiom is required to ensure that tasks that are not currently sched-
uled to execute nevertheless have a defined null result value.

i O A 5 : axiom
on-during(a,i) and tasksafe(a,i)
and member(b,inputs(a)) and not on-during(b,to-of(b,i,a))
implies singleton(taskresu1t (b,to-of(b,i,a)) ,bottom)

and tasksafe(b,to-of(b,i,a))

One last axiom expresses a constraint on the clock to ensure that it does
not suffer from excessive skew or jitter. This is not the axiom that requires
clock synchronization between processors for, at this level of abstract ion,
individual processors are not visible. It merely requires that the consensus
clock, resulting from synchronization, should not deviate too far from real
time.

ioab: axiom
t2 > t l
and (forall i: ending(of(i,clock)) 5 t2

implies (t2 - t l)*(l - lambda)-epsilon < reaLtime(t2) - real-time(t1)
imp lies t as ksafe (clock ,i))

and real-time(t2) - real-time(t1) < (t2 - tl)*(l+lambda)+epsilon

These are the major axioms of the 1/0 Specification. In the next section
we present the next lower-level specification and show how the primitives
and stated axioms of the 1/0 Specification are supported at the next level.

53

12

The Replication Specification

The Replication Specification, at the next lower level, introduces the notion
that tasks are replicated and executed by some number of processors. Based
on a high-level concept of each processor communicating its results to all
other processors, a specification of the majority voting performed by each
processor is given. Also defined here is the information flow communicating
the error reports from individual processors to the global executive. This
information is used by the global executive in order to diagnose processor
faults and remove from the configuration processors deemed to have solid
faults.

The concept of task scheduling has been refined to define not only the ex-
ecution window for task execution but also the set of processors assigned to
execute the task. The function pollfor-of(i, a) denotes the set of proces-
sors assigned to compute the ith iteration of task a. The 1/0 Specification
predicate on-during(a, i) is derived within the Replication Specification
as

rp-d7: axiom
on-during(a,i) iff card(po1lfor-of(;,a)) > 0

54

12. THE REPLICATION SPECIFICATION

With the concept of processor computation occurring in the Replication
Specification, the tasksafe predicate, which appears as primitive within
the 1/0 Specification, can be derived within the Replication Specification
in terms of working processors. The Replication Specification includes a
predicate safe(tl) which denotes the set of “safe” processors at any given
time, while safefor(t1,tz) denotes the set of processors safe during the
interval [tl, t2]. At the Activity Specification level, we will define a processor
being “safe” as a rather complex function of having correctly functioning
hardware, being in the correct configuration, and having a clock within
some skew of other processor clocks. Of course, the set safe will not have
an implementation counterpart, since the implementat ion will never have
perfect information concerning the set of correctly functioning processors.

A derived concept at this level is that of a task iteration’s data window.
The dwfor-to-of(b, i, a) is defined to be the time interval
[beginning(of(to-of(b, i , a)),b),ending(of(i, a)] . Based on this function,
we define dwfor-of(i,a) to be the interval extending from the beginning
of the execution window of the earliest input task to a and extending to
the ending of the execution of the ith iteration of task a (i.e., of(i,a)).

Using these concepts of data window and the set of working processors,
we can now derive the tasksafe predicate of the 1/0 Specification, as
follows:

rp-dga: axiom
tasksafe(a,i)
iff
not on-during (a,i)
or card(pol1for-of(i,a))

< 2 *card (un ion (p 011 for -of (i , a) ,safe f o r (dw -of (i , a)))

This definition states that a task a is safe if the task is not on-during(i)
or if a majority of the processors assigned to compute the task are working
for the data window of the task. It is necessary that the processors are in

55

12. THE REPLICATION SPECIFICATION

the set of safe processors for the entire data window of the task in order
that we can be assured (in mapping to the next lower level specification)
that the processor will not corrupt its input data prior to its use. We omit
discussion of the conditions necessary to define the safety of interactive
consistency tasks.

With the concept that a processor computes an iteration of a task,
comes the function on(a,i,p), which denotes the set of outputs produced
by processor p for the ith iteration of task a. In a manner left unspeci-
fied by this level, processor p communicates its results to all other system
processors. The function onin(a, i, p, q) denotes the value that processor
q has reportedly received from processor p for the ith iteration of a. The
relationship between on and onin is defined by the following axiom.

rpa2: axiom
member(p,union(pollfor-of(i,a) ,safe f o r (dw-of (i,a))))
implies (member (v,on (a,i,p))

iff (exists q: member (q,safefor (of (i ,a)))
and v = on-in(a,i,p,q)))

This defines that for a processor p in the poll set which is safe for
the data window, the result set on(p) is equal to the set of values that
processors safe for the execution window have reportedly received from p.
More intuitively, this states that the output of a working processor in the
poll is the set of values reportedly received by working processors.

The function in(a, i, q) is used to define the result of processor q voting
on the output of the ith iteration of a based on the results communicated
to it.

The overall structure of the Replication Specification is illustrated in
Fig. 8. The task structure shown is a refinement of the task configuration
illustrated in Fig. 7.

AS we shall show shortly, the 1/0 primitive taskresult(a, i) for a safe

5 6

12. THE REPLICATION SPECIFICATION

Processor a

result(b.i)
Taskb onr
Iteration

1 result(a,i)
in r

result(c,k)
Taskc onr
te tion

Processor r ?
(b to i of a) of b = j of b iofa

I I I I
(c10iofa)ofc = kofc

DWindow i of a
I I

Figure 8: Three Tasks in the Replication Specification.

57

12. THE REPLICATION SPECIFICATION

task iteration will be derived as the value a majority of assigned processors
obtained by their voting. All processors are required to report the results
of each task computation to all processors, and all processors are required
to vote on all received values. Rather than a task that produces a set of
output values as in the 1/0 Specification, in the Replication Specification
a task produces a set of sequences of values. This reflects the fact that
conceptual values in the system actually consist of a sequence of “machine
words.” Processor voting is scheduled (as specified at the next level of the
specification) on a word-by-word basis. We define voting via the following
axioms.

rp-d4: axiom
member(q,safefor(of(i,a)))
and 1 5 y and y 5 resultsize(a)
implies seq-elem(in(a,i,q) ,y) = majority(set-d4a(a,i,q,y)

rp-d4a: axiom
member(dp,set-d4a(a,i,q,y))
iff (exists p: seq-elem(onin(a,i,p,q),y) = value(dp)

and p = source(dp)
and member (p ,pollforsf (;,a))

For a safe processor q, a vote on position y, the yth element in in(a, i, q)
is defined to be equal to the majority of first components in the set of
value-processor pairs < u , p > where p is in the poll set and u is the yth
component of the onin value in processor p. This represents an encoding
of the majority value in the bag of all values q reportedly received from
processors in the poll set for task a.

The main execution axiom of the Replication Specification is now given.

58

12. THE REPLICATION SPECIFICATION

rpa3: axiom
member (p,union (poll for-of(a,k) ,safe f o r (dw -of (i,a))))
implies singlet on (on (a,i,p) ,apply (t hefunc t ion (a) ,set -va3 (a,i ,p)))

rpa3a: axiom
member (v t ,se t -va3 (a,i ,p))
iff member(source(vt) ,inputs(a))

and value(vt) = in(source(vt) ,to-of(source(vt) ,i,a) ,p)

Axiom rp-d6, quite similar to its counterpart in the 1/0 Specification,
defines that a working processor p, which is in the poll set for the ith
iteration of task a, will compute the proper function of its locally-voted
input values. Note that unlike its 1/0 axiom counterpart, this is purely a
local specification of the actions of a single, working processor operating on
locally computed information-still with respect to a synchronous system.

We are now in a position to define the mapping up to the 1/0 concept
of taskresult(a, i) . This is given by the following axiom.

rpd6: axiom
member(v,taskresult(a,i))
iff (exists p: member(p,safefor (of (i,a)))

and v = in(a,i,p))

This defines the set taskresult(a,i) as consisting of the set of values
that safe processors obtained as a result of voting. We omit discussion of
the other axioms of the Replication Specification. In order to show that the
1/0 Specification is a valid abstraction of the Replication Specification, we
must prove that the 1/0 axioms follow as theorems from the Replication
axioms and the mappings.

The proof of the main Execute Axiom of the 1/0 Specification (io-a2)
is in outline:

59

12. THE REPLICATION SPECIFICATION

Assuming the antecedent of the 1/0 Execute Axiom (ioa2),
that the task is safe and that there is only one value of the
result of each input task, each safe processor voting is shown to
obtain the same voted value to use as input to the computation
for that task.

By Axiom rpa3, this implies that each safe processor applies
the appropriate mathematical function to the same set of input
values, and thus every safe processor produces the same correct
output value.

But our assumption that the task is safe asserts that a majority
of the processors computing the task are safe. It follows that
the majority of computed values must be the correct value.

The proof of the main 1/0 Execute Axiom from the Replication axioms
required 22 proofs, with an average of 5 premises per proof and 106 instan-
tiations of axioms and lemmas overall.

60

13

The Activity Specification

This level of specification defines a completely local view of the behavior of
a single processor in the SIFT system. The fully distributed nature of the
SIFT system is specified at this level: each processor has an independent
concept of time, configuration, and schedule. Also at this level is a more
explicit specification of the activities and data structures which carry out
the transformations specified at the Replication level. Whereas the Repli-
cation level defines the executed and voted value for each execution window
of a task, the Activity level defines a schedule of execute and vote activities
to compute these values within the execution window.

Within the Activity Specification is the first indication that the SIFT
system is not synchronous; the subframes on the various processors start
and finish at slightly different real times. Two functions, start(t,p) and
finish(t,p) map subframe time on processor p to real times at which the
subframe starts and finishes, as shown in Fig. 9. “Real time” is represented
in the specification as a discrete domain, which can be thought of as clock
ticks, to allow induction. A short overhead interval occurs between the
finish of one subframe and the start of the next. Because of clock skew
and transport delay within SIFT, the processors will not be exactly syn-
chronized, but for the system to function correctly, it is necessary that the

61

13. THE ACTIVITY SPECIFICATION

Max Skew

* . . , I subframet , ~ I I subframet+l , Processor p

subframe t Processor q

?-< Overhead
stari(t,q) finish(t,q)

Figure 9: The Timing Relationships between Subframes on Asynchronous Processes.

clocks remain within a specified tolerance, max- skew, of each other. This
is the responsibility of the clock synchronization task, a part of each pro-
cessor’s Local Executive, using an algorithm whose proof is given in [ll].
The required synchronization is expressed by the following.

withinskew: axiom
clocksafe(p,t) and clocksafe (q,t)
implies finish(t,p) + broadcast-delay 5 start(t+l,q)

and finish(t,q) + broadcast-delay 5 start(t+l,p)

As we discussed earlier, SIFT is carefully designed so that the dis-
tributed system is effectively synchronous. Within the limits given above,
asynchronism caused by processor clock skew has no external effect. In the
case of the broadcasting of the results of a task, for example, our specifica-
tions define the value at the destination only after the latest time at which
the broadcast could have been completed, given the maximum processor
skew. It is necessary to prove that no access to this data is attempted be-
fore that time, in order to map this asynchronous system up to the higher
level, synchronous Replication and 1/0 Specifications.

6 2

13. THE ACTIVITY SPECIFICATION

The state of each processor is specified using two state-selector func-
tions, corresponding to two data structures of the SIFT operating system:
a data file connected via a broadcast interface to all system processors,
and an input file into which voted values are placed and from which a
task retrieves its input values. In the Activity Specification, the function
datafileinfor-on(p, a, q , r t) denotes the value in the datafile in processor
p at real time rt for the result of task a on processor q. The function in-
putin-of(p, a, r t) denotes the value in the input file in processor p at real
time rt for the voted result of task a.

As we mentioned earlier, each processor has an independent opinion of
the configuration it is expected to use in scheduling activities, obtained by
that processor itself voting the results of the replicated global executive
task. At the start of a subframetime t , processor q obtains config(t,q)
from the configuration subfield of inputin-of(q,global-exec,start (t, q)) .
For configuration c, the function sched(c, t , q) denotes the sequence of ac-
tivities scheduled for subframetime t on processor q. An activity is either
<execute,a > specifying the execution of task a or <vote,a, y > specifying a
vote on element y of the output of task a. Fig. 10 illustrates the interaction
between the data structures and scheduled activities.

The effect of an execute activity is specified by the following axiom.

bra41: axiom
workingduring(p,t) and working-during(q,t)
and member(act iv, sched(config (t ,q) ,t ,q))
and action(activ) = execute and task(activ) = a
and (forall vt: member(vt,vinputs)

iff member (source(vt ,inputs(a)))
and value(vt) = inputin-of(q,source(vt) ,start(t+l,q))

= apply (t hefunc t ion (a) ,vinput s)
implies datafileinfor-on(p,a,q,finish(t ,q) +broadcast-delay)

The set working(t) denotes the set of correctly functioning processors

63

13. THE ACTIVITY SPECIFICATION

Iteration

Processor p

Input Datafile
,in q forb on - In 9

for b at t
-L

\Ta*, lteratio
I

........................... Input / - Datafile
-inqforcon 'n q for c at t

I I

I Processor q I
I
I

... { .. 4 ...
I I
! I
i I

I

I Processor
I

I

I

- - - - - - - _ - - _ _ -
Schedule(conf ig (t ,rjj, r) Schedule(config(t,q),t,q)

r

Figure 10: A Partial View of Three Tasks in the Activity Specification.

64

13. THE ACTIVITY SPECIFICATION

during subframe t , and the predicate working,during(p,t) is true if pro-
cessor p is a member of that set. The antecedent of the axiom defines that
processors p and q are working during subframe t and that an execute activ-
ity for a is among the activities scheduled for processor q, according to its
perceived configuration. The consequent specifies that the datafile in each
working processor p for a on q at the finish of that subframe plus the broad-
cast delay, according to q’s clock, is equal to the correct function applied to
the set of input values present in the input file at the start of the nezt sub-
frame. Several explanations are in order. The hardware broadcast interface
connecting processor q’s datafile to all processor datafiles is asynchronous
and can be initiated at any time during the subframe, with respect to q’s
clock. In the event of an execute and a broadcast by processor q sometime
during subframe t , the earliest moment at which the entry for a on q can be
guaranteed is the finish of the subframe plus the maximum broadcast delay.
Thus the value is only defined at this moment in time, and with respect to
the broadcasting processor’s clock. It was necessary to demonstrate that,
with respect to receiving processor p’s clock, the information is present by
s t a r t (t + 1, p). Given the set of specified schedule constraints, it was shown
that the information is present in all loosely synchronized processors prior
to the first moment at which access can occur.

One might notice that an execute activity scheduled during subframe
time t causes the datafile at the start of time t + 1 to contain the result of
applying the appropriate function to the arguments present at the start of
time t + 1. This rather noncomputational definition is due to the possibility
of one subframe containing a vote on an input value and its subsequent use
in an execute. The effect of this sequence can be characterized by stating
that the execution uses as inputs the values defined after the end of the
subframe. In mapping this to the computation performed by the imple-
mentation, it was necessary to prove that schedule constraints allow this to
be achieved by sequentially performing the activity sequence scheduled for
the subframe.

The axioms defining a vote activity scheduled for the subframe are the

65

13. THE ACTIVITY SPECIFICATION

following:

bra%: axiom
working-during (p,t)
and member(activ,sched(config(t ,p) ,t ,p))
and action(activ) = vote and task(activ) = a and elem(activ) = y
implies elem(inputin-of (p,a,st art (t + 1 ,p)) ,y)

= majority(setagc(p,a,t,y))

set abstrac tiona9c: axiom
member (dp pet a9c(p,a,t ,y))
iff member(source(dp) ,pollby f o r (p,a,t))
and value(dp)

= elem(datafilein3or-on(p,a,source(dp) ,start(t,p)), y)

Given a working processor p scheduled to perform a vote on the yth
component of a during subframe t, the input file in p at the start of the
following subframe is defined to be the majority of datafile values present
in the datafile at the start of subframe t. The function pollbyfor(p, a, t)
denotes the set of processors determined by p at the time of the vote to
have executed the last iteration of task a.

These axioms constitute the primary axioms defining the Activity Spec-
ification. There are in all approximately 40 axioms defining the introduced
functions and predicates of the specification and constraining the composi-
tion of the schedule table.

In terms of the functions of the Activity Specification, we can now define
the mappings to the function symbols of the Replication Specification. The
function onin of the Replication level is derived with the following axiom.

66

13. THE ACTIVITY SPECIFICATION

brremapping-6: axiom
v = onin(a,i,p,q)
iff (forall t,activ,y: beginning(of(i,a)) <t <ending(of(i,a))

and l<ysresultsize(a)
and member(activ,sched(config(t ,q) ,t ,q)
and action(activ) = vote
and task(action) = a
and elem(action) = y
implies elem(v,y) = datafileinfor-on(q,a,p,start(t,q)), y))

Briefly, the mapping axiom defines each component y of the onin result
value to be the value present in the datafile at the time during the execution
window when a vote activity is scheduled for element y during a subframe
corresponding to the ith iteration of task a. Intuitively, the voted value is
the value in the input file following a scheduled vote. Schedule constraints
allow only one vote to be scheduled on a given element during an execution
window.

In an analogous manner, the mapping of the Replication Specification’s
in voted value is defined by the following axiom.

brremapping-7: axiom
(exists t,activ: start(frame(t)) = i*framesize

and 15 y lresult size (a)
and member(activ,sched (con fig(t ,p) ,t ,p))
and action(activ) = vote
and task(activ) = a
and elem(activ) = y
and d l = elem(inputin-of(p,k,start(t+l,p)), Y))

implies elem(in(a,i,p),y) = d l

The pollfor-of concept of a global poll set found at the Replication
level is mapped up from the Activity level with the following axiom.

67

13. THE ACTIVITY SPECIFICATION

brremapping-4: axiom
member(q,pollfor-of(i,a))
iff (exists p,t,activ,y: start(frame(t)) = itframesize

and l<y<resultsize(a)
and member (p ,safe f o r (of (i,a)))
and member(activ,sched (con fig(t ,p) ,t ,p))
and action(activ) = vote
and task(action) = a
and elem(action) = y
and member(q,pollbyfor (p,a,t))

The global concept of pollfor-of(i,a) is defined as the set of all pro-
cessors included in pollbyfor(p, a, t) at the time of a scheduled vote (of
any element) on a’ processor p that is safe for the execution window.

Finally, the last mapping to be illustrated is the definition of the set of
safe processors, as used in the Replication Specification. This is defined by
the following mapping axiom.

68

13. THE ACTIVITY SPECIFICATION

brremappingSx: axiom
member (p ,safe(t))
iff member (p,working (t))

and clocksafe(p,t)
and tasksafe(globa1-exeqlast (t,global-exec))
and (forall pp: ic-tasksafe(ic-errorireporter (pp) ,

and (exists q: safefor-ending(last(t,global-exec),
last (t,global-exec)))

ending(of(1ast (t,global-exec),

q ,g lo b al-exec)
global-exec)) ,

and member (p,configset (config (ending(of (last (t ,global-exec) ,
global-exec)) ,

q)))
and config(t,p) = config(ending(of(1ast (t,global-exec),

global-exec)) ,
q)))

The above definition represents a precise statement of a processor that is
correctly functioning, has a view of the last global executive output reflect-
ing the consensus, and whose clock is close enough to other safe processors
to properly communicate. The interaction between processor safety and
the output of the global executive is worthy of further explanation. The
definition does not require the processor to have been safe during previous
subframes; this allows transient faults to have affected the processor in the
past. The only requirements expressed are that

0 The global executive task, and the interactive consistency tasks that
supply error reports to it, have had sufficient replication to remain
safe.

0 Clock safety be recovered despite any transients affecting the clock in
the past.

69

13. THE ACTIVITY SPECIFICATION

0 There was a processor g that

- was safe for the last iteration of the global executive

- included p in its configuration

- had the same opinion of the current configuration as p.

The proof of the relationship between the Replication Specification and
the Broadcast Specification was quite challenging. The proof involved show-
ing that

The vote and execute activities, replicated on different proces-
sors and running during different subframes within the frame,
use the same information for input.

The various processors, operating independently and asynchron-
ously with only local information, communicate with each other
without mutual interference, the task schedules guaranteeing
that results are always available in other processors when re-
quired, and are never accessed at any time when they might be
modified by a broadcast.

The distributed system has, as a valid abstraction, the syn-
chronous, global characterization expressed in the Replication
Specification.

The axioms and schedule constraints imply consistency of con-
figuration and schedule within a single processor and between
processors during an execution window.

If the initial configuration has a majority of processors that are
safe and have identical opinions as to the configuration, then
processors that remain safe remain in the configuration and all
continue to have identical configurations.

70

14

PrePost; and Imperative Levels

The Activity level represents a specification for each processor in the dis-
tributed, multiprocessor system; the PrePost level, very similar in abstrac-
tion to the Activity level, defines the behavior of a single, independent pro-
cessor. The specification employs the data structure abstractions present
in the actual Pascal operating system implementation and is intended to
facilitate a connection between the multiprocessor system specification and
the proof of the Pascal operating system executing on a single processor.

At the program level of abstraction, even conceptually simple proper-
ties require very complex specification and tedious verification. Because
of the difficulty inherent in mapping between design specifications and an
imperative implementation model, we deliberately limited the conceptual
jump between the two levels. Having proved all considered aspects of the
design correct at higher levels in the hierarchy, the only conceptual jump
between the lowest level design specification and the implementation was
the change in specification medium; the PrePost Specification expresses
that the “code does what it does.” A traditional verification condition gen-
eration paradigm [121 was employed to prove precondit ion/postcondition
procedure characterizations from the Pascal procedures, each treated as a
sequential program. We explain only enough of the PrePost level and its

7 1

14. PREPOST AND IMPERATIVE LEVELS

specification for the reader to glean an overall understanding of this level
of the specification and proof.

Within the PrePost Specification, the state of a processor is specified
as a pair < p, t >, where p is a processor id and t is a subframe time. The
accessor functions proc and time map states into processor component
and time components, respectively. For a state pair < p,t >, the function
next(< p,t >) = < p , t + 1 >. Within the PrePost Specification, each
data structure of the Pascal program is declared as an explicit function
of the state. At the program level, the datafile is implemented as a two-
dimensional array of type array [proc ,task] of array [integer] of int e-
ger, mapping a processor identifier and task name into the array of integer
values currently in the datafile. The input file is declared to be of type
array [task,integer] of integer, mapping task name and element number
into an integer value. Similarly, the schedule table is implemented as an ar-
ray of type array [proc,config,subframe,activityindex] of activity,
defining for each processor, configuration, subframe, and activity index,
which activity is to be performed. The schedule table is a constant data
structure present in each processor and thus not a function of the state.

72

14. PREPOST AND IMPERATIVE LEVELS

The following PrePost axiom defines the semantics of the Execute ac-
tivity.

executeactivity: axiom
working-during (proc (sift st ate), subframe (siftst ate))
and (exists j: 1 5 j 5 maxactivities

and activity (index(index(index(index(schedfable,
index (real-t o-virt (sifts t at e),

proc(siftstate))) ,
config (sift st at e)) ,

sub frame (sifts t at e)) ,
j) 1

= execute
and taskname(index(index(index(index(sched-table,

index(real-to-virt (sifts t ate) ,
proc(siftstate))) ,

config(siftstate)) ,
subframe(siftstate)) ,

3)
= a

and (forall b,jl,y: 1 5 y 5 index(resultsize,tl)
implies index(index(inputs,a), j l) = b

and not (b = nullfask)
implies index(index(inp, j 1) , y)

= index(index(input (next (siftst ate)),
b) 3

Y)
implies index (index (dat afile (next (makest ate (sub frame(siftst at e),

proc(siftstate)))) ,
proc(siftstate)) ,

a>
= taskJesults(a,inp)

73

14. PREPOST AND IMPERATIVE LEVELS

The antecedent of the axiom defines the case where the processor com-
ponent of the state is correctly functioning for the current subframe, some
activity of the schedule for the current configuration and subframe spec-
ifies an execute for task a, and the auxiliary array variable inp contains
the value in the input data structure in the next(siftstate), for each input
task b indicated by the array inputs. The array real-to-virt, shown here
as an explicit function of the state, maps a real processor identifier into a
logical processor identifier, in terms of which the schedule table is defined.
Assuming the antecedent holds, the axiom then defines the datafile in the
executing processor in state next(siftstate) to contain the results of ap-
plying the appropriate function to the input array inp. As we discussed
in the previous section, it is required to prove during code verification that
sequential execution of the schedule activities will satisfy this noncompu-
tational specification of effect. A mapping axiom defines that the value
corresponding to the processor’s own entry in the datafile of a safe proces-
sor will be in all other datafiles by the start of the next subframe.

In order to apply sequential verification techniques to the Pascal pro-
gram executing on the processor, it is necessary to make the state < p, t >
of the processor and the dependence upon a correctly functioning processor
implicit. The sequential proof, in effect, considers execution on a properly
functioning Pascal machine satisfying the axiomatic specification of Pascal.
Furthermore, the next(siftstate) transition is taken to be one iteration
of the Pascal dispatcher procedure, called once per subframe by a clock
interrupt to execute the scheduled activity sequence. This “metatheoretic”
jump from an explicit-time, explicit-state specification to a Hoare sentence
specification is the only departure from our formal notion of hierarchy and
is made as a concession to allow traditional code verification tools to form
the last link of the proof. The validity of this jump is dependent upon a
proof that the dispatcher in fact is allowed to execute as a sequential pro-
gram, with no clock interrupts before completion and with no interference
between internal and external data structure access. The former assump
tion was demonstrated by a timing analysis of the actual Bendix 930 code
and the latter by the noninterference proof at the Activity Specification

74

14. PREPOST AND IMPERATIVE LEVELS

level. Following this transformation, the execution axiom above becomes
the following Hoare sentence

executeactivity: axiom
(exists j: 1 5 j 5 max-activities
and activity(index(index(index(index(sched-table,

real-to-virt (myproc)) ,
config) ,

subframe),
3)

= execute
and taskname(index(index(index(index(sched-table,

real-to-virt (myproc)) ,
config) 7

subframe),

$1
= a

and (fora11 b,jl,y: 1 2 y 5 index(resultsize,b)
index(index(index(index(sched-table,

implies index(index(inputs,a), j l) = b
and not (b = null-task)

implies index(index(inp, j 1) , y)
= index(index(input,b), y)

{dispatcher}

index(index(datafile,myproc) ,a) = taskresults(a,inp)

75

15

Conclusions and Further Work

Our proof has demonstrated that

0 Formal specification techniques can be used to state very abstract
requirements such as the SIFT reliability requirement and the tran-
sition characteristics of the Markov reliability model.

0 These formal requirements can be specified sufficiently succinctly that
they can be validated by human inspection.

0 It is possible to use hierarchical verification techniques to demonstrate
with rigor that a detailed design satisfies its requirements.

The soundness of the axiomatic specifications must be demonstrated
by the existence of an imperative model (the Pascal implementation) at
the lowest level of the hierarchy, relative to interpretations for all unim-
plemented function and predicate symbols (such as working, the set of
working processors). It is also necessary to assume the correct implementa-
tion of the Pascal machine, realized by the Pascal compiler and the Bendix
BDX930 hardware.

76

15. CONCLUSIONS AND FURTHER WORK

The process of formal specification and verification of SIFT resulted in
the discovery of four design errors-errors that would have been difficult
or impossible to detect by testing. Early specification efforts uncovered
the insufficiency of three clocks for fault-tolerant clock synchronization (see
[111). The formal proof revealed that tasks not scheduled to execute did not
regenerate their default result value during every iteration, thus exposing
that result to the accumulation of errors from transient faults.

A conclusion of our work is the importance of design verification prior
to implementation verification. The highest level design specifications for
the SIFT system could not have been expressed in terms of specifications
of individual Pascal programs.

The construction of these proofs demonstrated that the current form
of the Enhanced HDM is capable of design proofs of considerable com-
plexity, but it also demonstrated that such proofs can, at present, only be
constructed as a tour de force. The Revised Special specification language
was quite satisfactory and was capable of expressing everything that was
required, even at the very abstract levels of the IO and Transition Specifi-
cat ions.

This project was performed using the first working version of the En-
hanced HDM System and encountered problems caused by the limitations
of that first version. Later versions of Enhanced HDM, running on Sym-
bolics and Sun workstations, show better time and space performance, and
improved user interaction and theorem proving capability is being devel-
oped.

The verification system was rather slow for proofs as large as these. The
form of man-machine interaction envisaged for Enhanced HDM requires
rapid response from the computer to maintain the concentration of the
human user, preferably within a minute. But the parse-typecheck-proof
cycle for many of the proofs was closer to an hour than a minute, radically
affecting the useability of the system. The Foonly F4 is a relatively slow
computer and substantially faster workstations are now available. It is our

7 7

15. CONCLUSIONS AND FURTHER WORK

expectation that personal workstations of an appropriate performance will
become available within the next decade.

The system, running on a Foonly F4 computer, similar to a DEC Sys-
tem 20, was unable to accomodate a full specification in store at once.
Consequently it was necessary to partition the specifications into modules
that reflect the storage requirements of the system rather than the logical
structure of the proof. Portions of the specification had to be replicated,
and it was not possible to construct the dependency tree that demonstrates
that all proofs have been performed. Subsequent versions of the Enhanced
HDM system, running on Symbolics and Sun workstations, do not suffer
from this limitation.

The existing proof construction and debugging aids of Enhanced HDM
proved to be insufficient for complex proofs such as these. Enhanced HDM
requires the user to provide all substitutions into the axioms and lemmas
he or she cites to construct a proof. Only a few of these substitutions are
subtle and require human insight to discover, insight beyond the capabilities
of a computer. Many of the substitutions are obvious, but the number
of substitutions required in a large proof tends to overwhelm the human
user, and the proof aids provide only partial assistance in locating missing
substitutions. Current development work on the Enhanced HDM system
will generate almost all of the simple substitutions, greatly reducing the
burden on the user. This development work will also greatly improve the
effectiveness of the proof development aids. When these developments are
available, large proofs, such as these, will be more feasible.

The construction of the proofs demonstrate that design proof is indeed
possible, and perhaps even useful in very critical applications. However, we
must conclude that continuing further development of the mechanical tools
is necessary before large design proofs, such as that for SIFT, can be under-
taken as a standard validation procedure. We also conclude that the current
state of the resulting proof for SIFT, modularized for space conservation,
is not a good model for future efforts unless completely remodularized.

78

15. CONCLUSIONS AND FURTHER WORK

Acknowledgements.

The design, specification, and verification of the SIFT project have in-
volved many members of the Computer Science Laboratory, SRI Interna-
tional, past and present. J. Wensley led the original design effort for SIFT
and conceived the basic architecture. Also involved in the design were J.
Goldberg, K. Levitt, L. Lamport, R. Shostak, M. Pease, M. Green, W.
Kautz, and C. Weinstock. L. Lamport collaborated on the early "paper
formulations" of the SIFT specification hierarchy. R. Boyer, J. Moore, and
M. Green contributed to the design proof effort; D. Hare and K. Levitt un-
dertook a parallel code-level verification. J. Crow, J. Rushby, R. Shostak,
and F. von Henke participated in the development of the Enhanced HDM
specification and verification system. We particularly acknowledge the sup-
port and patience of our sponsors at NASA, N. Murray and R. Butler.

79

Bibliography

[l] J. Wensley et al., ”SIFT: Design and analysis of a fault-tolerant com-
puter for aircraft control,” Proc. IEEE, vol. 60, pp. 1240-1254, Oct.
1978.

[2] J. Goldberg, “SIFT: A provable fault-tolerant computer for aircraft
flight control,” Proc. IFIP Congress 1980, pp. 151-156.

[3] C. Weinstock, ”SIFT: System design and implementation,” 1Uth In-
ternational Symposium on Fault- Tolerant Computing, Oct. 1980.

(41 J. Goldberg, ”Development and evaluation of a software-implemented
fault-tolerant computer: SIFT hardware,” Tech Report, SRI Interna-
tional, Nov. 1979.

(51 J. Goldberg, ”Development and analysis of the software implemented
fault-tolerance (SIFT) computer,” Tech Report, SRI International,
Sept./ 1982.

[6] K. Moses, ”SIFT-An ultra reliable avionic computing system,” Proc.
NATO AGARD Conference on Tactical Airborne Distributed Comput-
ing and Networks, June 1981.

[7] M. Pease, R. Shostak, and L. Lamport, ”Reaching agreement in the
presence of faults,” JACM, vol. 27, pp. 228-234, Apr. 1980.

80

BIBLIOGRAPHY

[8] A. Hopkins, T. B. Smith and J. Lala, “FTMP-A highly reliable fault-
tolerant multiprocessor for aircraft,” Proc. IEEE, vol. 66, pp. 1221-
1239, Oct. 1978.

[9] R. Shostak, R. Schwartz, and P. M. Melliar-Smith, ”STP: A mecha-
nized logic for specification and verification,” Proc. 6th Conference on
Automated Deduction, 1982, pp. 32-49.

I
I [lo] R. Shostak, “Deciding Combinations of Theories,” Proc. 6th Confer-

ence on Automated Deduction, 1982, pp. 209-222.
I

[ll] L. Lamport and P. M. Melliar-Smith, ”Synchronizing clocks in the
presence of faults,” JACM, vol. 32, p. 1, Jan. 1985.

[12] S. Igarashi, R. London, and D. Luckham, ”Automatic program verifi-
cation: A logical basis and its implementation,” Acta Informatica, vol.
4, pp. 45-182, 1975.

[13] J. Crow et al., ”SRI Specification and Verification System: User’s
Guide,” Tech Report, SRI International, Apr. 1986.

[14] J. Crow et al., “SRI Specification and Verification System: Prelimi-
nary Definition of the Revised Special Specification Language,” Tech
Report, SRI International, May 1986. i

I

81

Standard Bibliographic Page

1. Report No.

NASA CR-4097
2. Government Accession No.

Design V e r i f i c a t i o n o f SIFT

17. Key Words (Suggested by Authors(s))
R e l i a b l e computers
F a u l t t o l e r a n c e
Reconf i g u r a t i o n

~ ~~

7. Author(s)
Louise Moser, Michael Mel l ia r -Smi th , Richard Schwartz

18. Distribution Statement

U n c l a s s i f i e d - Unlimited

3. Performing Organization Name and Address

SRI I n t e r n a t i o n a l , Computer S c i e n c e Labora tory
333 Ravenswood Avenue
Menlo park , CA 94025

N a t i o n a l Aeronaubics and Space A d m i n i s t r a t i o n
Langley Research Center
Hampton, VA 23665

12. Sponsoring Agency Name and Address

15. Supplementary Notes

19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages
U n c l a s s i f i e d 84 U n c l a s s i f i e d

3. Recipient’s Catalog No.

22. Price

A0 5

5. Report Date
September 1987

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-66-2 1-0 1
11. Contract or Grant No.

NAS1-15528
13. Type of Report and Period Covered

C o n t r a c t o r Report
14. Sponsoring Agency Code

Langley Technica l Monitor: Ricky W. B u t l e r
F i n a l Report

16. Abstract

A SIFT r e l i a b l e a i r c r a f t c o n t r o l computer svstem, des igned t o m e e t t h e u l t r a h i g h
r e l i a b i l i t y r e q u i r e d f o r s a f e t y c r i t i c a l f l i g h t c o n t r o l a p p l i c a t i o n s by u s e of
processor r e p l i c a t i o n and v o t i n g , w a s c o n s t r u c t e d by t h e Bendix C o r p o r a t i o n f o r
SRI, and w a s d e l i v e r e d t o NASA Langley f o r e v a l u a t i o n i n t h e AIRLAB. To i n c r e a s e
o u r conf idence i n t h e r e l i a b i l i t y p r o j e c t i o n s f o r SIFT, produced by a Markov
r e l i a b i l i t y model, SRI c o n s t r u c t e d a f o r m a l s p e c i f i c a t i o n f o r SIFT, d e f i n i n g t h e
meaning of r e l i a b i l i t y i n t h e c o n t e x t of f l i g h t c o n t r o l . A f u r t h e r series of
s p e c i f i c a t i o n s d e f i n e d , i n i n c r e a s i n g d e t a i l , t h e d e s i g n of SIFT down t o p r e
and p o s t c o n d i t i o n s on P a s c a l code p r o c e d u r e s . Mechanica l ly checked mathemat ica l
p r o o f s were c o n s t r u c t e d t o demonst ra te t h a t t h e more d e t a i l e d d e s i g n s p e c i f i c a -
t i o n s f o r SIFT do indeed imply t h e formal r e l i a b i l i t y requi rement . An a d d i t i o n a l
s p e c i f i c a t i o n d e f i n e d some of t h e assumpt ions made about SIFT by t h e Markov
model, and f u r t h e r p r o o f s were c o n s t r u c t e d t o show t h a t t h e s e assumpt ions , as
expressed by t h a t s p e c i f i c a t i o n , d i d indeed f o l l o w from t h e more d e t a i l e d d e s i g n
s p e c i f i c a t i o n s f o r SIFT. This r e p o r t p r o v i d e s a n o u t l i n e of t h e methodology used
f o r t h i s h i e r a r c h i c a l S p e c i f i c a t i o n and p r o o f , and d e s c r i b e s t h e v a r i o u s s p e c i f i -
c a t i o n s and p r o o f s performed.

S p e c i f i c a t i o n
V e r i € i c a t i o n

S u b j e c t Category 62

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA-Langley, 1987

